Proximal Biceps Repair: Mechanical Comparison of Loop 'N' Tack and Standard Krackow Stitch

Sam Akhavan, MD

Arthrex Research and Development Department

Test Objective:

Compare the biomechanical strength of a novel Loop 'N' Tack proximal biceps stitch technique using 1.3 mm SutureTape Fiber-Link[™] suture (Arthrex, Inc.) to that of a standard Krackow stitch using #2 FiberWire[®] suture.

Methods and Materials:

Eleven matched pairs of proximal biceps were harvested from fresh frozen cadaver shoulders (average age = 49 ± 14 years, 9 male, 2 female). One tendon from each pair was stitched using the novel 1.3 mm SutureTape FiberLink suture for the Loop 'N' Tack method, approximately 5 mm to 7 mm from the terminal end, as shown in Figures 1a and 1b. The contralateral tendon sample was stitched using #2 FiberWire[®] suture in a standard Krackow stitch pattern. Each Krakow sample was prepared with 3 stitches on each side, ending about 5 mm from the terminal end of the tendon, as shown in Figures 2a and 2b.

Mechanical testing was performed using an E10000 Instron Machine with a 1kN load cell secured to the cross-head. A pneumatic clamp held the suture tails to the testing surface, and a vise grip fixture secured the proximal ends of the biceps tendons. Samples were cyclically loaded between 5 N and 20 N for 100 cycles, followed by a pull to failure at 33 mm/sec. Load and displacement data were recorded at 500Hz.

Figure 1a and 1b. Loop 'N' Tack Stitch using 1.3 mm SutureTape FiberLink suture.

Figure 2a and 2b. Krakow stitch using #2 FiberWire suture.

Results:

Paired t-tests were used to compare the outcome measures of each sample group. There were no significant differences found between the two groups for ultimate load (P = 0.928), or for cyclic displacement (P = 0.351). The greater stiffness of the SutureTape samples was significantly different from that of the Krackow samples (P = 0.035). The results are shown graphically in Figures 3, 4, and 5.

Figure 3. The ultimate load of the Loop 'N' Tack samples (285 \pm 45 N) was not significantly different than that of the Krackow stitch (286 \pm 48 N).

Figure 4: The stiffness of the Loop 'N' Tack $(42 \pm 11 \text{ N/mm})$ was significantly greater than that of the Krakow stitch $(37 \pm 13 \text{ N/mm})$.

Figure 5: The cyclic displacement of the Krackow samples $(6.5 \pm 1.8 \text{ mm})$ was not significantly different than that of the Krackow stitch $(5.8 \pm 1.4 \text{ mm})$.

Conclusions:

The mechanical strength of the Loop 'N' Tack stitch is, at minimum, equivalent to that of a Krackow stitch.