In Vitro Studies: Biomechanical Validation

- 18 porcine tibias and 18 bovine extensor tendon allografts were divided into 3 groups: retrograde absorbable screw fixation, cortical-cancellous suture button suspension apparatus fixation, and combined tibial fixation in the tibia with 6 specimens per group.

- Specimens were biomechanically tested with cyclic (500 cycles, 50 N-250 N, 1 Hz) and load-to-failure (20 mm/min) parameters.

- Results: Soft-tissue grafts fixed with a combination of a retrograde screw and a suture button were able to withstand higher initial failure and ultimate failure loads and were also stiffer than grafts fixed with either a retrograde screw or a suture button alone.

Effectiveness of low-profile supplemental fixation in anterior cruciate ligament reconstructions with decreased bone mineral density. *Arthroscopy.* 2013;29(9):1540-1545. doi:10.1016/j.arthro.2013.05.019

- This study compared ACL fixation using a bioabsorbable interference screw and a supplemental low-profile suture anchor (4.5 mm PushLock® anchor) with a standard bioabsorbable interference screw to determine if fixation methods were dependent on tibial bone mineral density.

- A bone mineral density scanner was used in 20 fresh frozen female knee specimens. The specimens were divided into two groups—one with just the interference screw and one with the screw and PushLock® anchor combined. Tibial-sided ACL fixation with hamstring tendon grafts were performed on all specimens. Load-to-failure and stiffness were biomechanically tested.

- Results: Supplemental fixation of ACL with a PushLock® anchor is beneficial in persons with normal bone mineral density of the proximal tibia.

The ACL Backup Fixation System includes the implants and instruments needed to back up the fixation sutures of an ACL graft or the *InternalBrace™* ligament augmentation of an ACL reconstruction or primary repair.

The SwiveLock® anchor is a simple, low-profile option for ACL backup fixation and comes self contained in an all inclusive ACL Backup Kit. The kit contains a 4.75 mm SwiveLock implant as well as a spade-tipped drill and two disposable taps (4.75 mm and 5.2 mm for hard bone or when using FiberTape® suture).

The purpose of this study was to compare the biomechanical characteristics of 4 types of ACL reconstruction methods on the tibial side.

28 porcine tibias were divided into 4 groups based on different fixation methods. Group D was fixed using a double-spike plate (DSP), Group I was fixed using an interference screw, Group DI-80 was fixed using both an interference screw and DSP (80 N tension was applied to DSP), and Group DI-150 was fixed using both an interference screw and DSP (150 N tension was applied to DSP).

Results demonstrate that the initial fixation strength of the hamstring tendon can be increased by using an interference screw combined with DSP on the tibial side.

The purpose of this study was to compare the biomechanical characteristics of quadrupled hamstring graft tibial fixation using 3 different fixation methods. 9 matched pairs (18 specimens) of cadaver tibias were divided into 3 groups of 6 specimens.

The first group was fixed with only a tapered 30 mm bioabsorbable screw (BIS), the second group was fixed first with a BIS, and then the remaining tendon portion was additionally fixed with a titanium cortical screw and spike washer, and the third group was fixed with only a cortical screw and spike washer.

Biomechanical testing with cadavers showed that a BIS and additional cortical screw and spike washer fixation to the distal hamstring tendon resulted in higher load at failure and stiffness compared to either BIS or cortical screw and spike washer fixation alone.

Additional tibial fixation is essential for aggressive rehabilitation. Authors hypothesized that additional graft tissue fixation using bioabsorbable suture anchors would provide sufficient pullout strength.

24 fresh frozen porcine distal femur and patellar tendon preparations were used. All specimens were divided into 3 groups based on additional fixation methods: (A) isolated BIS; (B) BIS and bioabsorbable suture anchor (BSA); and (C) BIS and post cortical screw. Tensile testing was carried out under an axial load. Ultimate failure load and ultimate failure load after cyclic loading were recorded.

Conclusion: An additional BSA fixation resulted in a significantly higher ultimate failure load and stiffness than isolated BIS fixation and similar to post screw fixation.

- This study compared the effect of independent suture tape reinforcement on the dynamic elongation and stiffness behavior as well as ultimate strength of tripled smaller diameter and quadrupled soft-tissue grafts for ACL reconstruction (ACLR) with tibial screw fixation in a biomechanical in vitro study.
- Tripled smaller diameter (8 mm) and quadrupled (9 mm) bovine tendon grafts with and without suture tape reinforcement (n = 8 in each group) were tested using femoral suspensory and tibial interference screw fixation. The suture tape was femoral sided and fixed independent from the graft by passing it through the suspensory button and securing the two open tibial strands with a secondary interference screw.
- Reinforcement of tripled and quadrupled grafts substantially decreased total elongation by 56%. No statistical significance was found between the reinforced groups.
- Independent reinforcement of soft-tissue grafts with suture tape strengthened the performance, especially of tripled smaller diameter grafts for ACLR with tibial screw fixation by significantly improving dynamic elongation at increased stiffness and ultimate strength. Quadrupled reinforced grafts showed no overconstraining and structurally behaved similarly to tripled grafts with reinforcement.

- This study biomechanically evaluated 30 porcine tibias with three methods of tibial-sided fixation for ACLR: a fully threaded interference screw only, an interference screw with 4.5 mm bicortical post, and an interference screw with a 4.75 mm SwiveLock® anchor.
- Mechanical testing consisted of 500 cycles between 50 N and 250 N at 1 Hz followed by a pull-to-failure conducted at 20 mm/minute.
- Ultimate load-to-failure testing demonstrated the largest mean (SD) load tolerated in the post/washer group, 1148 (186) N compared to the SwiveLock anchor group, 1007 (176) N, and the screw-only group, 778 (139) N. There was no statistical difference between the 2 backup fixation groups.
- Conclusion: Use of a SwiveLock anchor as backup fixation at the tibial side in soft-tissue ACLR is a safe, effective alternative to a bicortical post and provides statistically equivalent pullout strength with unlikely requirement for future hardware removal.

In Vivo Studies: Clinical Outcomes

- This was a randomized controlled clinical trial in which 56 female patients divided into 2 groups (standard tibial fixation with 7 mm × 25 mm metal interference screw versus metal interference screw with supplementary staple fixation) were followed for 2 years.
- After 2 years, the mean side-to-side difference using KT-1000 arthrometer manual maximum measurements was 1.8 mm (standard group) and 1.1 mm (staple group).
- Conclusions: Supplementary tibial fixation in female patients undergoing ACLR with hamstring tendon graft in addition to a single-size screw significantly improves laxity measurements and clinical stability assessment 2 years after surgery.

- 90 patients who underwent ACLR were randomly divided into 3 groups: (1) patients with standard single-bundled hamstring tendon graft and standard operative technique, (2) patients had a modified single-bundle hamstring tendon graft with bone attachments, and (3) patients were operated with hybrid fixation technique at the tibial site.

- Group 3 patients achieved statistically significant better postoperative results on the Tegner scale and Lysholm scores when compared to patients in Groups 1 and 2. It took the third group athletes a significantly shorter time to participate in the first competition after surgery than the athletes from the other two groups.

- Conclusion: Hybrid operative technique increased strength and stability of the graft at the tibial site which accelerated healing process and reduced knee laxity.

- This study compared outcomes between standard ACLR using hamstring grafts with and without suture augmentation (SA). Patients who underwent ACLR with hamstring autografts or allografts with minimum 2-year follow-up were retrospectively reviewed.

- 60 patients who underwent ACLR with hamstring autografts or allografts with minimum 2-year follow-up were retrospectively reviewed. The suture augmented group used a TightRope® ABS tibial fixation button with a 4.75 mm SwiveLock® ACL anchor backup.

- The study demonstrates that suture augmented hamstring ACLRs were associated with improved PROMs, less pain, and a higher percentage of and earlier return to preinjury activity level when compared with standard hamstring ACLRs.

Systematic Reviews

- This was a total of 21 studies (15 biomechanical and 6 clinical).

- Most biomechanical studies reported significantly increased strength and stiffness with hybrid fixation versus single modes of fixation. Among clinical studies, 66% reported significantly decreased anterior-posterior laxity when hybrid fixation methods were employed with the remainder showing no difference.

- Conclusion: Hybrid methods of tibial-sided graft fixation in ACLR result in stronger initial fixation and less side-to-side laxity after healing but do not change patient-reported outcomes at 1- to 3-year follow-up.

Surgical Technique Citations

- This article introduces a low-profile technique for ACLR using an interference screw and knotless anchor. Biomechanically, this technique has a significantly greater load-to-failure than interference screw fixation alone.

- Describes the technique for ACLR using an Achilles tendon allograft with bone plug combined with ACL backup.